

SL622, Programmable Linear Hall Effect Sensor IC

Description

SL622 is the leading product of Senko Micro's programmable Linear Hall IC. After programmed, it can measure the magnetic field which applied to the IC plane vertically and provide a voltage output that is proportional to the applied magnetic field. The customer can configure the sensitivity, quiescent (zero field) output voltage, reference voltage and temperature compensation coefficient through programming with the VIOUT pin on power-on condition. The configure parameters are programmed into the non-volatile memory so as to ensure the IC 's stability in worse electrical and magnet environment. It can be programmed to be ratio-metric or non-ratio-metric output with VCC

SL622 can be easily used to manufacture current transducers when working with the magnetic core. The factory can make different range of transducers through programming different sensitivity.

Besides, SL622 can be applied to be position sensor in the condition when the magnetic field change with the magnet position change.

Features

- Fantastic Wide Selectable sensitivity range from 1.14 to 231mV/G
- VREF pin can be programmed to two different modes: input or output

VREF Input mode: the reference voltage can be revised in the range $0.5 \sim 2.6V$ by external input voltage.

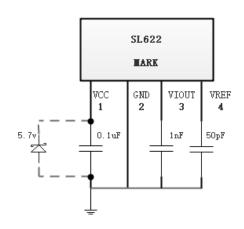
VREF Output mode: The quiescent(zero field) output voltage can be programmed into two modes:

Ratio-metric: 0.5Vcc

Non-ratio-metric: fixed 2.5V

- The quiescent error of VIOUT VREF can be adjust to be < ±4mV@2.5v
- The Sensitivity error after programmable < ±6mV@5V
- High current load ability, VIOUT & VREF can be connected to differential output mode
- Faster Response time <2us
- Easily Programmed by VIOUT, multiple sensors can be programmed parallelly
- Single supply +5 V
- Extremely thin package: 1.54 mm case
- Independent intellectual Property Rights

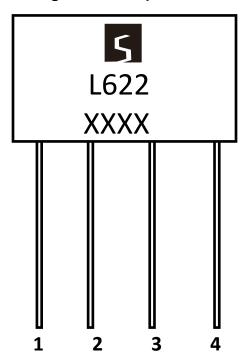
Package View

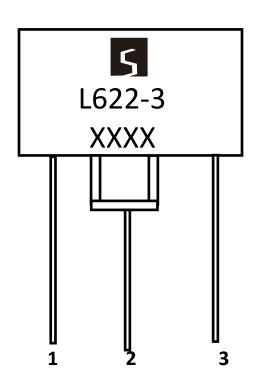

Top view

SL622

SL622-3

Typical Application

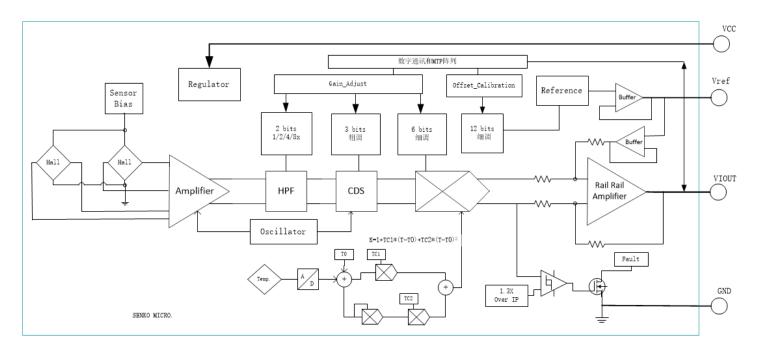




Order information

Part Number	Spectial Code	Packaging	Temp Range	Packing	Selection guide
SL622-	В	E (TO94)			Only for old customers
SL622-3	А	(3) TO94-3	F(-40~125℃)	1k/Bag	1.9mm pinch
SL622-GL	G	L (TO94)			High speed and high drive capacity with Vref

Pin Configuration (top view)



Pin number SL622 SL622-DL	Pin number SL622-3	Pin Name	Description
1	1	VCC	Device power supply terminal
2	2	GND	Signal Ground terminal
3	3	1/10 11 1 1	Analog output signal, also should be used to programming digital I/O
			Reference terminal Also support differential output mode with Vlout
4		VREF	 VREF pin can be programmed to peripheral input voltage (0.5 ~ 2.6V) range

Functional Block Diagram

Absolute Maximum Ratings

Absolute maximum ratings are limiting values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.

Characteristic	Symbol	Notes	Rating	Unit
Vcc	Supply voltage		6.0	V
V _{RCC}	Reverse Supply Voltage		-0.1	V
V _{IOUT}	Output voltage		6.0	V
V _{RIOUT}	Reverse Output Voltage		-0.1	V
TA	Nominal Operating Ambient		-40~125	$^{\circ}$
	Temperature			
T _{J (max)}	Maximum Junction		165	Ĵ
	Temperature			
T_{stg}	Storage Temperature		-65~170	°C
REF Source Current	Vref Current Sour	Vref shorted to GND.	3.47	mA
REF Sink Current	Vref Current Sink	Vref shorted to VCC	40	mA
lout(Source)	Output Current Source	Shorted Output-to-Ground Current	3.43	mA
I _{OUT(Sink)}	Output Current Sink	Shorted Output-to-VCC Current	40	mA
ESD	HBM mode		4	KV

Parameters of peripheral components

Device	Test Condition	Min	Тур	Max	Units
C vcc	Power filter capacitor, connected between VCC / GND		0.1		uF
Суют	Output viout filter capacitor, connected between viout / GND		1	1.5	nF
CVREF	VREF filter capacitor at reference end, connected between VREF / GND		50	100	pF

Common operating Characteristics

Note: Over full range of TA=-40°C ~ 125°C, CBypass=0.1uF, CLoad=1nF, VCC=5V, unless otherwise specified.

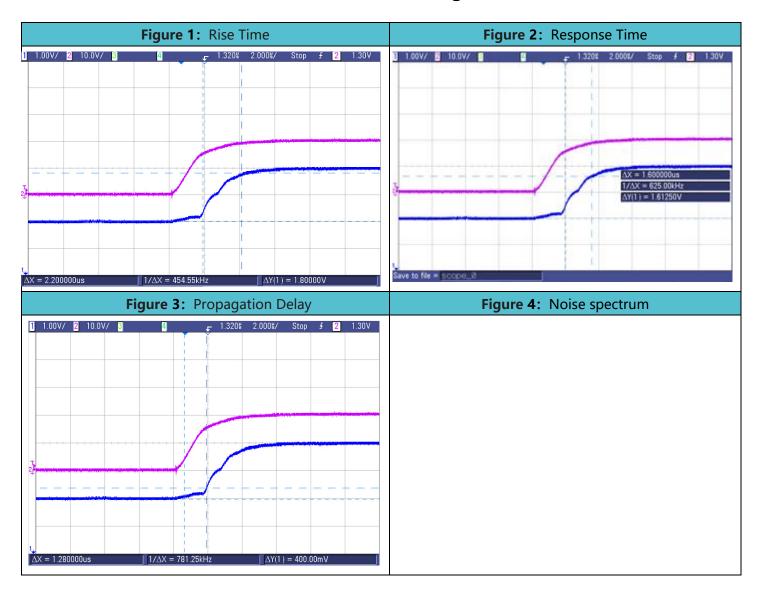
Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Supply Voltage	V _{cc}	Programmed to be 5.0v	4.5	5.0	5.5	V
Supply Current	I _{cc}	V _{CC} = 5.0V, output open	10	20	26	mA
Output Load Capacitance	CL	VIOUT to Gnd		1	1.5	nF
Output Load Resistance	RL	VIOUT to Gnd	2.2			kΩ
VREF Load Capacitance	CLREF	VREF to Gnd,SL622		50	100	pF
VREF Load Resistance	RLREF	VREF to Gnd,SL622	2.2			kΩ
Nonlinearity	ELIN	Measured using full-scale and half-scale IP			1	%
Response Time	t _r	$T_A = 25$ °C, $C_{OUT} = 1$ nf			2.5	μS
Response delay time	T _{pd}	IP= Full scale		1.2		uS
Power-On Time	t _{PO}	Output reaches 90% of steady-state level, $T_J = 25$ °C,		100	200	uS
Chopping Frequency	Fc	T _A = 25°C		1		MHz
Frequency Bandwidth	f	Small signal –3 dB, CL = 1 nF, TA = 25°C;		Tbd		kHz

High Precision, Programmable Linear Hall Effect Sensor

Output characteristic after programmable

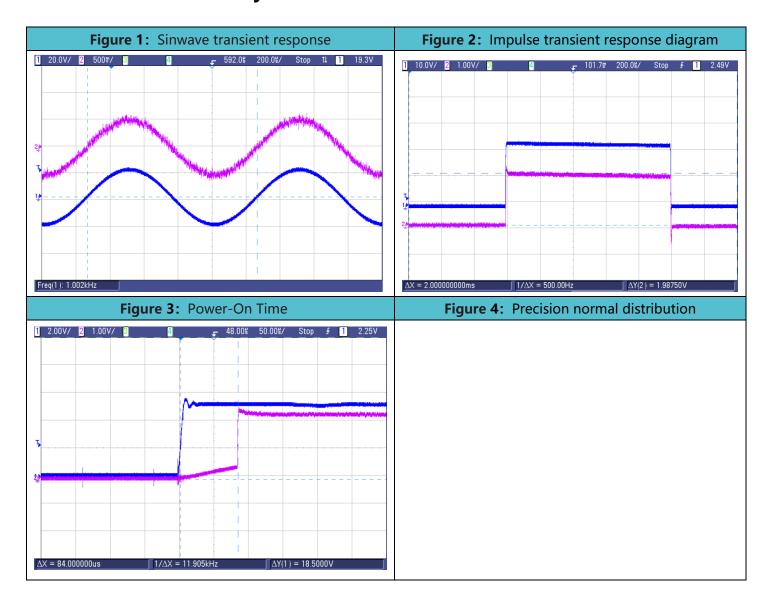
Note: Over full range of TA=-40°C ~ 125°C, CBypass=0.1uf, CLoad=1nF, VCC=5V, unless otherwise specified.

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
		Non variable ratio,TA = 25°C,VCC=5V	2.495	2.5	2.505	V
Quiescent Output Voltage	VIOUT (QU)	Variable ratio, TA = 25°C,VCC=5V	2.495	2.5	2.505	V
		VREF is the input mode,	0.5	-	2.6	V
		TA = 25°C , VCC=5V				
Electrical offset voltage @ IP = 0	Voe	Vlout - Vref @ Vref= 2.5v,TA=25°C	-5	-	5	mV
		Variable ratio: VREF@0.5*VCC				
Sensitivity change ratio	Sen_coef	VCC=4.5v~5.5v		VCC/5		
		Sens_coef=Sens(VCC)/Sens(5V)				
		Non variable ratio: VREF@2.5V				
Voltage variation at non variable ratio	Vout@IP=0A	VCC=4.5v~5.5v		2.5		V
Vlout linear rail to rail output range	Vrail-rail	RL=4.7kΩ	10		90	%VCC
VREF Voltage Output		TA = 25℃				mV
Temperature Error	VREF	TA = -40°C to 25°C				mV
		TA = 25°C to 125°C				mV
Quiescent Voltage Output		TA = 25°C				mV
Temperature Error	VIOUT	TA = -40°C to 25°C				mV
		TA = 25°C to 125°C				mV
		T _A =25°C, output filtered				%
Total Output Error	Етот	TA = -40°C to 25°C				%
		TA = 25°C to 125°C				%
		T _A = 25°C, C _{OUT} = 1nF, Sens=5mv/GS	,	120		mV_{p-p}
		$T_A = 25$ °C, $C_{OUT} = 1$ nF, $Sens=5$ mv/GS		22		mV_{RMS}
		T _A = 25°C, C _{OUT} = Open, Sens=5mv/GS		122		mV_{p-p}
		$T_A = 25$ °C, $C_{OUT} = Open$, $Sens=5mv/GS$		21		mV_{RMS}
Noise	Vn	$T_A = 25$ °C, $C_{OUT} = 1$ nF, $Sens=140$ mv/GS	1			mV_{p-p}
		T _A = 25°C, C _{OUT} = 1nF, Sens=140mv/GS				mV _{RMS}
		T _A = 25°C, C _{OUT} = Open, Sens=140mv/GS				mV_{p-p}
		T _A = 25°C, C _{OUT} = Open, Sens=140mv/GS				mV_{RMS}



Accuracy characteristic curve

Figure 1: VREF error vs. Temperature	Figure 2: Difference zero point Vs Temperature
Figure 3: Nonlinearity vs. Temperature	Figure 4: Total error Vs Temperature
Figure 3: Nonlinearity vs. Temperature	Figure 4: Total error Vs Temperature
Figure 3: Nonlinearity vs. Temperature	Figure 4: Total error Vs Temperature
Figure 3: Nonlinearity vs. Temperature	Figure 4: Total error Vs Temperature
Figure 3: Nonlinearity vs. Temperature	Figure 4: Total error Vs Temperature
Figure 3: Nonlinearity vs. Temperature	Figure 4: Total error Vs Temperature
Figure 3: Nonlinearity vs. Temperature	Figure 4: Total error Vs Temperature
Figure 3: Nonlinearity vs. Temperature	Figure 4: Total error Vs Temperature
Figure 3: Nonlinearity vs. Temperature	Figure 4: Total error Vs Temperature
Figure 3: Nonlinearity vs. Temperature	Figure 4: Total error Vs Temperature



AC characteristic diagram

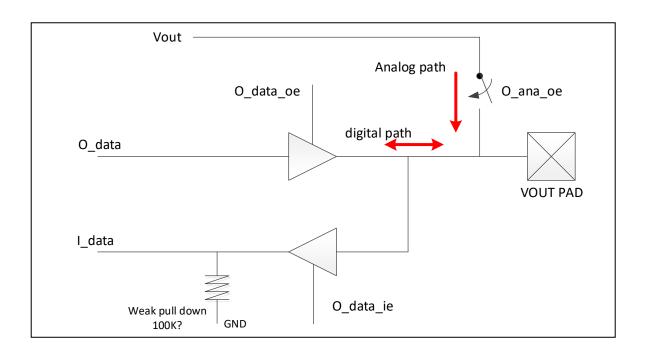
Dynamic characteristic curve

Sensitivity programming bit

Symbol	T	est Conditions	5		Min	Тур	Max	Unit
sel_sensor[1]	Read	dable by custor	mer		-	1	-	Bit
INC_HALL_I	Read	dable by custo	mer		-	2	-	Bit
S3_OUT_DRV	Read	dable by custor	mer		-	1	-	Bit
S2_double	Read	dable by custor	mer		-	1	-	Bit
Gain_COARSE	Read	dable by custor	mer		-	2	-	Bit
Gain_FINE					-	9	-	Bit
sel_sensor[1]	INC_HALL_I	S3_OUT_DRV	S2_double	Gain_COARSE				
0	2	0	0	0	1.140	-	2.752	mv/Gs
0	0	0	0	0	1.710	-	4.128	mv/Gs
0	0	0	0	1	3.421	-	8.257	mv/Gs
0	0	0	0	2	6.842	-	16.514	mv/Gs
0	0	0	0	3	13.685	-	33.028	mv/Gs
0	0	0	1	3	27.371	-	66.056	mv/Gs
0	0	1	1	3	41.0568	-	99.084	mv/Gs
1	1	1	1	3	95.799	-	231.196	mv/Gs

Offset programming bit

Characteristic	Symbol	Test Condition	Min	Тур	Max	Units
			-	6	-	Bit
		VREF output voltage (0 Gauss)	-250	-	250	mV
VREF Offset coarse	VREF	adjustment				
programming Bits		Step adjustment		8		mV
				7		Bit
VIOUT Offset fine tuning	VIOUT	VIOUT output voltage (0 Gauss)	-250	-	250	mV
programming Bit		adjustment				
		Step adjustment		4		mV


Non calibration programming bit

Characteristic	Symbol	Test Condition	Min	Тур	Max	Units
			-	2	-	Bit
		select output voltage				
		2b00: VREF=0.5*vdd,				
Working mode	VREF	2b10: VREF=2.5V	-	_	-	-
		2b11: Vref from external				
				4		Bit
Select temperature	TC1	select the sensitivity tc slope for temp	0	_	1280	ppm
coefficient		4b0000: 0ppm				
		4b1111:1280ppm				
		80ppm Step adjustment		80		ppm
				4		Bit
Select temperature	TC2	select the sensitivity to slope for temp	0	-	1280	ppm
coefficient		4b0000: 0ppm				
		4b1111:1280ppm				
		80ppm Step adjustment		80		ppm
				2		Bit
Select the breakpoint of th	еТСТН					
two stage tc calibration		2b00: -20℃				
		2b01: -10℃	-		-	
		2b10: 0℃				
		2b11: 65℃				
				1		Bit
		Reverse induction				
Magnetic reversal		1b0: default	-	_	_	-
		1b1: opposite polarity				

Programming description

- As a programming pin, Vlout supports input or output communication, which is digital input and programmable mode by default
- through lock protocol, the function of Vlout is switched to one-way analog output mode, and digital input is no longer supported.
- Through the ability of analog muti driver, read the digital code in the analog state, turn off the analog output, switch to the analog mode, realize the analog entering the digital mode, and solve the secondary programming.

Feature reference application

◆ SL622 Application of VREF

VREF is equal to static output value (without external magnetic)

The relationship between VIOUT and VREF: VIOUT=B*SENS+VREF (B: flux magnetic)

◆ SL622 VREF function selection

Characteristic	Symbol	Test Condition	Min	Тур	Max	Units
			-	2	-	Bit
		select output voltage				
		2b00: VREF=0.5*vdd,				
Working mode	VREF	2b10: VREF=2.5V	-	-	-	-
		2b11: Vref from external				

- When 0.5Vcc is selected, VREF outputs 0.5Vcc and has the driving ability of > 3mA.
- When 2.5V is selected, VREF output is fixed at 2.5V, and has the driving ability of > 3mA.
- When VREF external drive is selected, VREF is the input mode, which supports external input voltage.
 The static output voltage can be modified to 0.5 ~ 2.6V; the sensitivity remains unchanged.

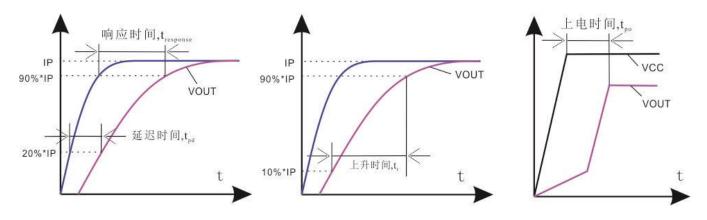
◆ Delay time tpd and response time tresponse

Propagation Delay (tpd)

The time interval between a) when the applied magnetic field reaches 20% of its final value, and b) when the output reaches 20% of its final value

Response Time (tresponse)

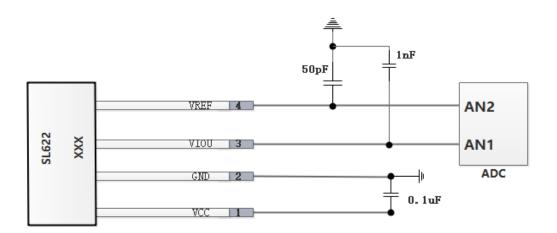
The time interval between a) when the applied magnetic field reaches 90% of its final value, and b) when the sensor reaches 90% of its output corresponding to the applied magnetic field. The 90%-90% is also shown in the Electrical Characteristics table and in the performance data.


Rise Time (tr)

The time interval between a) when the sensor IC reaches 10% of its final value, and b) when it reaches 90% of its final value

Power-On Time (tpo)

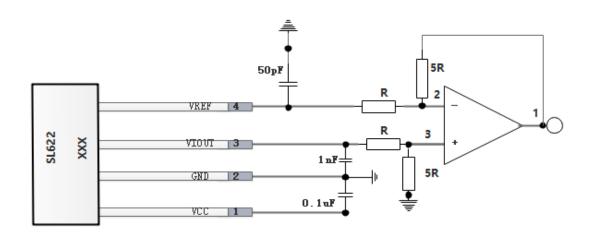
Power on time is used to describe the time difference between the secondary side and the power supply VCC, that is, the time difference between the secondary side output and the VCC when it reaches the steady-state output value.



Application circuit diagram

Support AC or DC

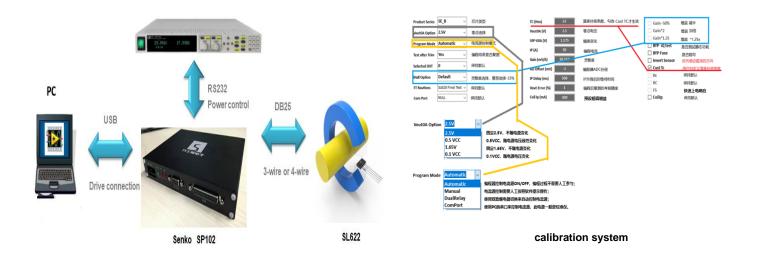
1) SL622 and ADC connection diagram


VREF is the output mode when using 0.5Vcc and 2.5V can be external circuit or NC

2) Schematic diagram of difference mode between Vlout and VREF of SL622:

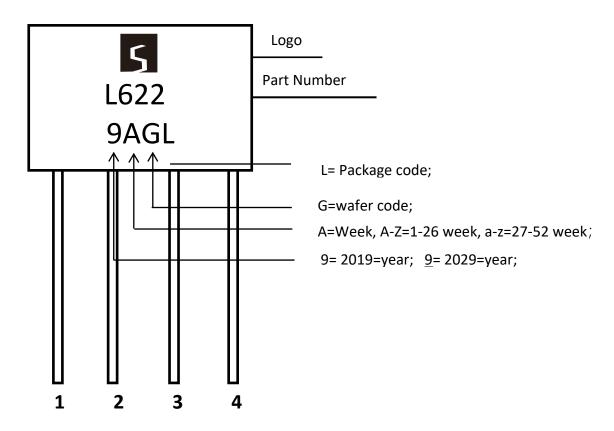
Pictured: VIOUT = IP * Sensitivity * (5R / R)

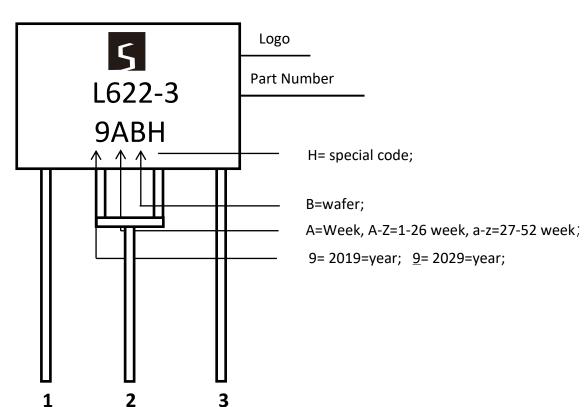
3) When VREF is selected as the input mode, external input voltage can be used to modify VREF voltage to $0.5 \sim 2.6$ V. At this time, viout static voltage is equal to VREF voltage



Programming System

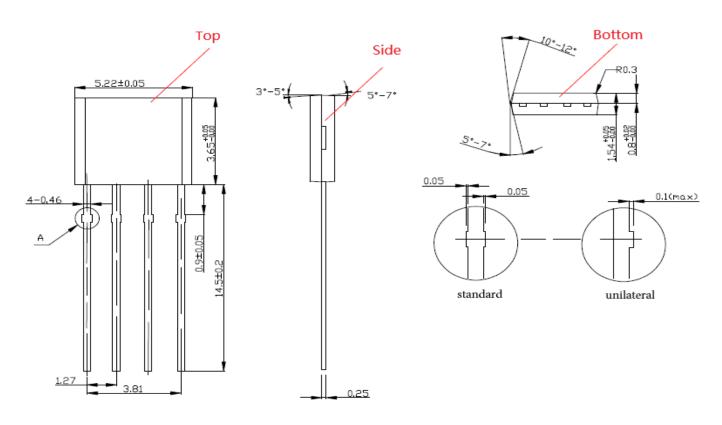
The SL622 incorporates a serial interface that allows an external controller called SP102 to automatically calibrate in the MTPROM. Please contact with FAE of SenkoMicro.

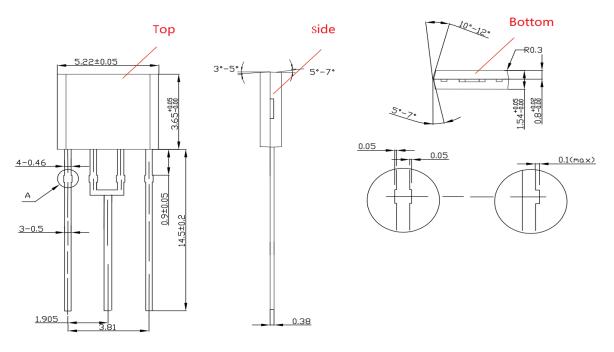

Email: fae@senkomicro.com



- The programming hardware takes SP102 as the core, the USB serial port installation driver realizes the PC connection, and the RS232 serial port transmission command realizes the control current source; the DB25 serial port provides high-precision 5V power supply for the IC, and the Vlout as the programming pin realizes the communication transmission.
- The program system opens all programmable functions, supports users to program in a wide range of sensitivity, and has greater flexibility.
- There are error proofing measures in the program settings. For example, Bin3 and bin4 product programs
 have prompt functions. The product program is unlocked by default, that is, the product can be
 reprogrammed and calibrated repeatedly to reduce the error probability.
- ♦ Note: please refer to the technical application manual for details of programming calibration

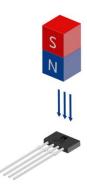
♦ Mark Description




Package Information

Note: all dimensions are in millimeters.

SL622


SL622-3

Magnetic induction direction selection

Characteristic	Symbol	Test Condition	Min	Тур	Max	Units
				1		Bit
		Reverse induction				
Magnetic reversal	-	1b0: default	-	-	-	-
		1b1: opposite polarity				

Note:

- By default, when the N-pole magnetic field is close to the identification surface of sl622, the voltage output will rise accordingly.
- When {opposite polarity} is selected, when the magnetic field is S-pole close to the sl622 identification surface, the voltage output will rise accordingly.

Important Notice

SENKO micro-electronics co., Ltd. Reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

SENKO micro's products are not to be used in life support devices or systems, if a failure of an SENKO product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.

The information included herein is believed to be accurate and reliable. However, SENKO micro-electronics co., Ltd. Assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website: www.senkomicro.com

Revision Table

Revision	Change	Page	Author	Date
1. 0	Initial draft based XG601		Deng	2020. 02
1. 1	Add SL622-GL Version		Jon	2020. 03
1. 2				
1.3				
1. 4				
1.5				
1.6				
1. 7				
1.8				